La glucólisis, también denominada glicólisis o ruta de Embden-Meyerhof, es la secuencia metabólica en la que se oxida la glucosa. Consiste de nueve reacciones enzimáticas que producen dos moléculas de piruvato y dos equivalentes reducidos de NADH, los que, al introducirse en la cadena respiratoria, producirán cuatro moléculas de ATP.
Cuando hay ausencia de oxígeno, la glucólisis es la única vía que produce ATP en los animales. Los organismos primitivos se originaron en un mundo cuya atmósfera carecía de 02 y, por esto, la glucólisis se considera como la vía metabólica más primitiva. Está presente en todas las formas de vida actuales. Es la primera parte del metabolismo energético y en las células eucariotas ocurre en el citoplasma.
* La reacción global de la glucólisis es:
El ciclo de Krebs (también llamado ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos) es una serie de reacciones químicas que forman parte de la respiración celular en todas las células aerobias, es decir que utilizan oxígeno. En organismos aeróbicos, el ciclo de Krebs es parte de la vía catabólica que realiza la oxidación de hidratos de carbono, ácidos grasos y aminoácidos hasta producir CO2, liberando energía en forma utilizable (poder reductor y GTP).
El metabolismo oxidativo de glúcidos, grasas y proteínas frecuentemente se divide en tres etapas, de las cuales el ciclo de Krebs supone la segunda. En la primera etapa los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos (p. ej. desaminación oxidativa), la beta oxidación de ácidos grasos y la glucolisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según la teoría del acomplamiento quimiosmótico.
El ciclo de Krebs también proporciona precursores para muchas biomoléculas, como ciertos aminoácidos. Por ello se considera una vía anfibólica, es decir, catabólica y anabólica al mismo tiempo.
La fosforilación oxidativa es la transferencia de electrones de los equivalentes reducidos NADH, NADPH, FADH, obtenidos en la glucólisis y en el ciclo de Krebs hasta el oxígeno molecular, acoplado con la síntesis de ATP. Este proceso metabólico está formado por un conjunto de enzimas complejas, ubicadas en la membrana interna de las mitocondrias, que catalizan varias reacciones de óxido-reducción, donde el oxígeno es el aceptor final de electrones y donde se forma finalmente agua.
La fosforilación oxidativa es un proceso bioquímico que ocurre en las células. Es el proceso metabólico final (catabolismo) de la respiración celular, tras la glicólisis y el ciclo del ácido cítrico. De una molécula de glucosa se obtienen 36 moléculas de ATP mediante la fosforilación oxidativa.
Dentro de las células, la fosforilación oxidativa se produce en las membranas biológicas. En procariotas es la membrana plasmática y en eucariotas es la membrana interna de las dos de que consta la mitocondrial. El NADH y FADH2, moléculas donadores de electrones que "fueron cargadas" durante el ciclo del ácido cítrico, se utilizan en un mecanismo intrincado (que implica a numerosas enzimas como la NADH-Q reductasa, la citocromo c oxidasa y la citocromo reductasa), gracias a la bomba H+ que moviliza los protones contra un gradiante de membrana.
Un gran complejo proteico llamado ATP-sintasa situado en la membrana, permite a los protones pasar a través en ambas direcciones; genera el ATP cuando el protón se mueve a favor de gradiente. Debido a que los protones se han bombeado al espacio intermembranoso de la mitocondria en contra de gradiente, ahora pueden fluir nuevamente dentro de la matriz mitocondrial y mediante la vía ATP-sintasa, se genera ATP en el proceso. La reacción es:
ADP3- + H+ + Pi ↔ ATP4- + H2O
Genética
QUÉ ENTENDEMOS POR "GENÉTICA"
La genética es una ciencia, y por lo tanto como tal, implica "un conocimiento cierto de las cosas por sus principios y sus causas". Entonces... ¿cuáles son estas cosas que como ciencia la genética estudia?, pues, la "Herencía Biológica", y la "Variación". Y, sus principios y causas, son las "leyes y principios" que gobiernan las "semejanzas" y "diferencias" entre los individuos de una misma "especie".
Trataremos de ddesglosar la definición de genética de manera aclaratoria, y así ir subiendo uno por uno los peldaños que nos conducen a una mayor complejidad dentro de la misma, que es la "manipulación". Ante todo, es necesario dejar por sentado un concepto tan claro, como sencillo, pero es el que da pie, para luego derivarse en otros tantos conceptos. AI hablar de las características atinentes a toda materia viva, se dice que, "todo ser vivo nace de otro semejante a él", o sea, que posee "caracteres" semejantes a los de su progenitor. Y ¿qué entendemos pues, por "caracteres "? Se trata de cada peculiaridad, cada rasgo, ya sea, morfológico (de forma), funcional, bioquímico (algunos autores incluyen los rasgos psicológicos también) que presenta un individuo biológico.
Y estos "caracteres" o características lo hacen pertenecer a una misma "especie". ("Especie", es un término que, según el Diccionario de la Real Academia Española, se refiere "al conjunto de cosas semejantes entre sí, por tener una o varios caracteres comunes entre sí").
Hasta ahora todo apunta, a que la genética estudia los caracteres semejantes que se transmiten de padres a hijos, aquéllos que los hacen parecer entre sí. Pero sucede que también presentan aquellos caracteres que no son semejantes, que varían, y a los cuales dentro de esta ciencia se los denomina "variaciones", y que también son transmitidos genéticamente, o son influenciados por el medio ambiente, al cual se lo denomina "Paratipo".
Lo que aún sigue oscuro dentro de esta definición, es cómo se transmiten de una generación a otra, estos "caracteres" y estas "variaciones": aquí es donde aparecería el concepto de "gen", término del cual deriva el nombre de esta apasionante ciencia, que es la genética.
¿QUÉ ES UN GEN?
¿DE QUÉ ESTÁ CONFORMADO?,
¿DÓNDE SE ENCUENTRA?,
¿CÓMO SE TRANSMITE DE PADRES A HIJOS?
Las respuestas a estas preguntas, se irán encadenando de tal manera que darán como conclusión, la formación de un ser vivo, un individuo biológico.
Todos los individuos están formados por unidades microscópicas que se agrupan formando tejidos. Estas unidades (células) poseen dentro de sí, un núcleo; es decir, una estructura diferenciada dentro de la célula. En el interior del núcleo se halla una macromolécula (una sustancia química, de la cual hablaremos más adelante) que es la encargada de la información genética.
Llamamos "gen", entonces, a las distintas porciones de esta macromolécula que se ocupan, cada una de ellas, de una característica hereditaria determinada. Aunque la obtención de una característica determinada (por ejemplo, el color de los ojos) es más compleja, y depende de la interacción del material genético con el citoplasma celular, con el medio ambiente (Paratipo), y también de la interacción con otros genes.
El conjunto de genes heredados es lo que se denomina "Genotipo". El "Genotipo" provee la información necesaria para la producción de diversos rasgos; luego éstos se ven influidos por el medio ambiente, y esto dependerá de la vida de cada individuo (por ejemplo, una determinada contextura muscular, se verá más o menos desarrollada de acuerdo con la actividad de cada individuo). De esta interacción con el medio ambiente resulta lo que llamamos "Fenotipo" que es aquello que se aprecia sensorialmente del individuo.
Dijimos que el "gen", estaba compuesto por una macromolécula, el ácido desoxirribonucleico, que se encuentra formado por dos cadenas unidas entre sí, y enrrolladas en una espiral.
CIENCIAS DE
En 1866, un padre agustino aficionado a la botánica llamado Gregorio Mendel publicó los resultados de unas investigaciones que había realizado pacientemente en el jardín de su convento durante más de diez años. Éstas consistían en cruzar distintas variedades de guisantes y comprobar cómo se transmitían algunas de sus características a la generación siguiente.
Su sistema de experimentación tuvo éxito debido a su gran sencillez, ya que se dedicó a cruzar plantas que sólo diferían en una característica externa que, además, era fácilmente detectable. Por" ejemplo, cruzó plantas de semillas verdes con plantas de semillas amarillas, plantas con tallo largo con otras de tallo corto, etc.
Mendel intuyó que existía un factor en el organismo que determinaba cada una de estas características. según él, este factor debía estar formado por dos elementos, Lino que se heredaba del organismo masculino y el otro del elemento. Además estos dos elementos consistirían en versiones iguales o diferentes del mismo carácter; cada ,tensión del factor proporcionaría, por ejemplo, un color distinto a la semilla o una longitud de tallo diferente en la planta. Además, tal y como veremos más adelante, algunas, versiones serían dominantes respecto a otras. Actualmente a estos factores se les denomina genes, palabra derivada de un término griego que significa «generar», y a cada versión diferente del gen se la denomina alelo. Así el gen que determina, por" ejemplo, el color de la semilla en la planta del guisante puede tener " dos alelos, uno para las semillas verdes y otro para las semillas amarillas.
Observando los resultados de cruzamientos sistemáticos, Mendel elaboró una teoría general sobre la herencia, conocida como leyes de Mendel.
Primera ley de Mendel
Si se cruzan dos razas puras para un determinado carácter, los descendientes de la primera generación son todos iguales entre sí y, a su vez, iguales a uno de sus progenitores, que es el poseedor del alelo dominante. Mendel elaboró este principio al observar que si cruzaba dos razas puras de plantas del guisante, una de semillas amarillas y otra de semillas verdes, la descendencia que obtenía, a la que él denominaba F1, consistía únicamente en plantas que producían semillas de color amarillo. Estas plantas debían tener, en el gen que determina el color de la semilla, los dos alelos que habían heredado de sus progenitores, un alelo para el color verde y otro para el color amarillo; pero, por alguna razón, sólo se manifestaba este último, por lo que se lo denominó alelo dominante, mientras que al primero se le llamó alelo recesivo.
Segunda ley de Mendel
Los alelos recesivos que, al cruzar dos razas puras, no se manifiestan en la primera generación (denominada F1), reaparecen en la segunda generacion (denominada F2) resultante de cruzar los individuos de la primera. Ademas la proporción en la que aparecen es de
Tercera ley de mendel
Los caracteres que se heredan son independientes entre si y se combinan al azar al pasar a la descendencia, manifestandose en la segunda generacion filial o F2. En este caso, Mendel selecciono para el cruzamiento plantas que diferian en dos caracteristicas, por ejemplo, el color de los guisantes (verdes o amarillos) y su superficie (lisa o arrugada).
Observo que la primera generaci6n estaba compuesta unicamente por plantas con guisantes amarillos y lisos, cumpliendose la primera ley. En la segunda generaci6n, sin embargo, aparecian todas las posibles combinaciones de caracteres, aunque enlas proporciones siguientes: 1/16 parte de guisantes verdes y rugosos, 3/16 de verdes y lisos, 3/16 de amarilios y rugosos y por ultimo 9/16 de amarillos y lisos. Esto le indujo a pensar que los genes eran estructuras independientes unas de otras y, por lo tanto, que unicamente dependia del azar la combinaci6n de los mismos que pudiese aparecer en la descendencia.
A principios de este siglo, cuando las tecnicas para el estudio de la celula ya estaban suficientemente desarrolladas, se pudo determinar que los genes estaban formados por acido desoxirribonucleico (ADN) y ademas se encontraban dentro de unas estructuras que aparecian en el citoplasma justo antes de cada proceso de divisi6n celular. A estas estructuras se las denomin6 cromosomas, termino que significa « cuerpos coloreados », por la intensidad con la que fijaban determinados colorantes al ser teñidos para poder observarlos al microscopio. Ademas se vio que estos aparecian repetidos en la celula formando un numero determinado de parejas de cromosomas homologos caracteristico de cada especie, uno de los cuales se heredaba del padre y el otro de la madre. Tambien se pudo comprobar que el numero de pares de cromosomas no dependia de la complejidad del ser vivo. Asi por ejemplo, en el hombre se contabilizaron 23 pares de cromosomas, mientras que en una planta como el trigo podian encontrarse hasta 28 pares.
En base a estos descubrimientos y a los estudios realizados en 1906 por el zoologo estadounidense Thomas H. Morgan sobre los cromosomas de la mosca del vinagre (Drosophila melanogaster), se pudo elaborar la teoria cromos6mica de la herencia donde se establecia de manera inequívoca la localizac16n fisica de los genes en la celula. Gracias a esta teoria se pudo dar tambien una explicaci6n definitiva a los casos en los que no se cumplian con exactitud las leyes de Mendel anteriormente citadas.
De manera parecida a Mendel, Morgan se dedic6 a cruzar de manera sistematica diferentes variedades de moscas del vinagre. Estas moscas ofrecian muchas ventajas con respecto a los guisantes ya que tienen un ciclo vital muy corto, producen una gran descendencia, son faciles de cultivar, tienen tan s6lo cuatro cromosomas y presentan caracteristicas hereditarias facilmente observables, como el color de los ojos, la presencia o ausencia de alas, etcetera.
BIOTECNOLOGÍA
Las biotecnologías consisten en la utilización de bacterias, levaduras y células animales en cultivo, cuyo metabolismo y capacidad de biosíntesis son orientados hacia la fabricación de sustancias específicas. Las biotecnologías permiten, gracias a la aplicación integrada de los conocimiento y las técnicas de la bioquímica, la microbiología y la ingeniería química aprovechar en el plano tecnológico las propiedades de los microorganismos y los cultivos celulares. Permiten producir a partir de recursos renovables y disponibles en abundancia gran número de sustancias y compuestos.
Aplicadas a escala industrial las tales biotecnologías constituyen la bioindustria, la cual comprende las actividades de la industria química: síntesis de sustancias aromáticas saborizantes, materias plásticas, productos para la industria textil; en el campo energético la producción de etanol, metanol, biogas e hidrógeno; en la biomineralurgia la extracción de minerales. Además en algunas actividades cumplen una función motriz esencial: industria alimentaria (producción masiva de levaduras, algas y bacterias con miras al suministro de proteínas, aminoácidos, vitaminas y enzimas); producción agrícola (donación y selección de variedades a partir de cultivos de células y tejidos, especies vegetales y animales transgénicas, producción de bioinsecticidas); industria farmacéutica (vacunas, síntesis de hormonas, interferones y antibióticos); protección del medio ambiente (tratamiento de aguas servidas, transformación de deshechos domésticos, degradación de residuos peligrosos y fabricación de compuestos biodegradables).
Los procesos biotecnológicos más recientes se basan en las técnicas de recombinación genética así como en el empleo de enzimas y células inmovilizadas. Las moléculas de "ADN recombinado" son elaboradas fuera de las células vivas, uniendo segmentos de ADN natural o sintético a moléculas de ADN que pueden replicarse luego en una célula viva. El principio consiste en reunir un ADN "nativo" y un ADN "extraño" en un vector y, a continuación, introducir el vector en una célula huésped donde podrá multiplicarse. La población así obtenida constituye un clon de "células transformadas" que pueden expresar el mensaje genético extraño que han incorporado y por ende, producir proteínas específicas en gran cantidad. Entre otras ya se sintetizan en bacterias -la célula huésped- proteínas de gran valor económico como la insulina, la hormona del crecimiento y los interferones.
MANIPULACIÓN GENÉTICA
Antes de adentrarnos en el tema de la "manipulación genética", hace falta una introducción, para aclarar una serie de cuestiones y así también realizar una trayectoria hasta llegar a la "manipulación", la cual es en realidad uno de los últimos peldaños que en la actualidad, se desprende de la genética como ciencia.
Quizá, luego de tomar conocimiento de algunas nociones elementales, podamos percibir que ciertas cuestiones, que desde hace un tiempo atrás pululan en las historias de ciencia ficción, ya no nos resultan tan descabelladas, ni tan ficcionales, sino que podrían ser un atisbo hacia una ciencia que se proyecta al
futuro; con actualidad, que tiene sus raíces históricas en un pasado no tan lejano; allá por el año 1865, cuando un monje agustino, llamado Gregor Mendel, profesor de historia natural y física, presentaba un informe con sus descubrimientos, ante
La manipulación genética es "la introducción de genes extraños en una célula"; siendo esta célula generalmente un embrión; o sea el producto del huevo fecundado. Recuérdese que se llama "huevo" o "cigoto"; cuando la célula sexual femenina, el óvulo, es fecundado por la célula sexual masculina, el espermatozoide. La fecundación se realiza en el aparato genital femenino, más específicamente, en las trompas uterinas (en el ser humano, se produce en la parte superior de las trompas). Este nuevo huevo o cigoto no tiene al principio, un solo núcleo, sino dos, uno es el pronúcleo del espermatozoide, y otro, es el pronúcleo del óvulo que lo conformaron (luego éstos se unirán para formar el núcleo del huevo). Dicho huevo se extrae del aparato genital, y fuera del mismo, se le introduce material genético, que son fragmentos de A.D.N. contenidos en los genes. El lugar específico donde se realiza esta inoculación es, en el pronúcleo masculino del huevo. Al introducir material gené tico extraño, se pretende producir nuevos caracteres hereditarios que no estaban en el material genético original.
Es importante aclarar que es éste el único estadio de la vida animal en el que un mensaje genético extraño, puede ser aceptado. Estos huevos con material genético extraño incorporado, reciben el nombre de "huevos manípulados", habiéndose realizado, como dijimos, esta serie de maniobras, en el exterior del aparato genital, luego de lo cual, se lo vuelve a reimplantar en el útero de la hembra.
Esta técnica se realiza mayormente en mamíferos, más específicamente, en ratones, ya que tienen mayor aceptación para someterse a este tipo de "manipulaciones".
Se piensa que las "manipulaciones" abrirían un camino para la creación de nuevas especies, con un rendimiento mejor o con una crianza menos costosa; y por otro lado, servirían para el reforzamiento, en una especie determinada, de ciertos caracteres, ampliando el campo de la Biología experimental, más precisamente, de
Otros de los beneficios en que esto redituaría, podría ser, la importancia del estudio de algunos aspectos del desarrollo embrionario, que hasta la actualidad se desconocen.
Ingeniería genética , método que modifica las características hereditarias de un organismo en un sentido predeterminado mediante la alteración de su material genético. Suele utilizarse para conseguir que determinados microorganismos como bacterias o virus, aumenten la síntesis de compuestos, formen compuestos nuevos, o se adapten a medios diferentes. Otras aplicaciones de esta técnica, también denominada técnica de ADN recombinante, incluye la terapia génica, la aportación de un gen funcionante a una persona que sufre una anomalía genética o que padece enfermedades como síndrome de inmunodeficiencia adquirida (SIDA) o cáncer.
La ingeniería genética consiste en la manipulación del ácido desoxirribonucleico, o ADN. En este proceso son muy importantes las llamadas enzimas de restricción producidas por varias especies bacterianas. Las enzimas de restricción son capaces de reconocer una secuencia determinada de la cadena de unidades químicas (bases de nucleótidos) que forman la molécula de ADN, y romperla en dicha localización. Los fragmentos de ADN así obtenidos se pueden unir utilizando otras enzimas llamadas ligasas. Por lo tanto, las enzimas de restricción y las ligasas permiten romper y reunir de nuevo los fragmentos de ADN. También son importantes en la manipulación del ADN los llamados vectores, partes de ADN que se pueden autorreplicar (generar copias de ellos mismos) con independencia del ADN de la célula huésped donde crecen. Estos vectores permiten obtener múltiples copias de un fragmento específico de ADN, lo que hace de ellos un recurso útil para producir cantidades suficientes de material con el que trabajar. El proceso de transformación de un fragmento de ADN en un vector se denomina clonación, ya que se producen copias múltiples de un fragmento específico de ADN. Otra forma de obtener muchas copias idénticas de una parte determinada de ADN es la reacción de la polimerasa en cadena, de reciente descubrimiento. Este método es rápido y evita la clonación de ADN en un vector.
Terapia génica
La terapia génica consiste en la aportación de un gen funcionante a las células que carecen de esta función, con el fin de corregir una alteración genética o enfermedad adquirida. La terapia génica se divide en dos categorías. La primera es la alteración de las células germinales, es decir espermatozoides u óvulos, lo que origina un cambio permanente de todo el organismo y generaciones posteriores. Esta terapia génica de la línea germinal no se considera en los seres humanos por razones éticas. El segundo tipo de terapia génica, terapia somática celular, es análoga a un trasplante de órgano. En este caso, uno o más tejidos específicos son objeto, mediante tratamiento directo o extirpación del tejido, de la adición de un gen o genes terapéuticos en el laboratorio, junto a la reposición de las células tratadas en el paciente. Se han iniciado diversos ensayos clínicos de terapia genética somática celular destinados al tratamiento de cánceres o enfermedades sanguíneas, hepáticas, o pulmonares.
Beneficios
La ingeniería genética tiene un gran potencial. Por ejemplo, el gen para la insulina, que por lo general sólo se encuentra en los animales superiores, se puede ahora introducir en células bacterianas mediante un plásmido o vector. Después la bacteria puede reproducirse en grandes cantidades constituyendo una fuente abundante de la llamada insulina recombinante a un precio relativamente bajo. La producción de insulina recombinante no depende del, en ocasiones, variable suministro de tejido pancreático animal. Otra aplicación importante de la ingeniería genética es la fabricación de factor VIII recombinante, el factor de la coagulación ausente en pacientes con hemofilia. Casi todos los hemofílicos que recibieron factor VIII antes de la mitad de la década de 1980 han contraído el síndrome de inmunodeficiencia adquirida (SIDA) o hepatitis por la contaminación viral de la sangre utilizada para fabricar el producto. Desde entonces se realiza la detección selectiva de la presencia de VIH (virus de la inmunodeficiencia humana) y virus de la hepatitis C en los donantes de sangre, y el proceso de fabricación incluye pasos que inactivan estos virus si estuviesen presentes. La posibilidad de la contaminación viral se elimina por completo con el uso de factor VIII recombinante. Otros usos de la ingeniería genética son el aumento de la resistencia de los cultivos a enfermedades, la producción de compuestos farmacéuticos en la leche de los animales, la elaboración de vacunas, y la alteración de las características del ganado.
Riesgos
Mientras que los beneficios potenciales de la ingeniería genética son considerables, también lo son sus riesgos. Por ejemplo, la introducción de genes que producen cáncer en un microorganismo infeccioso común, como el virus influenza, puede ser muy peligrosa. Por consiguiente, en la mayoría de las naciones, los experimentos con ADN recombinante están bajo control estricto, y los que implican el uso de agentes infecciosos sólo se permiten en condiciones muy restringidas. Otro problema es que, a pesar de los rigurosos controles, es posible que se produzca algún efecto imprevisto como resultado de la manipulación genética.